From:	Moody, Dustin (Fed)
То:	(b) (6)
Subject:	Fw: BIKE slides
Date:	Friday, February 23, 2018 10:14:17 AM
Attachments:	BIKE.pptx

From: Perlner, Ray (Fed)Sent: Friday, February 23, 2018 10:02 AMTo: Moody, Dustin (Fed)Subject: BIKE slides

BIKE

(Bit-Flipping Key Exchange)

Presented by Ray Perlner

High Level Summary

- Variants of McEliece/ Neiderreiter based on Quasi-Cyclic MDPC codes
 - Non-algebraic codes like MDPC codes look good for key reduction with quasi cyclic structure
 - (unlike algebraic codes e.g. those used in DAGS and BigQuake)
 - Performance is competitive with lattice-based schemes, but attack complexity seems easier to analyze.
 - Has somewhat high dec. failure rate (< 10⁻⁷); targeting IND-CPA.
- Three versions
 - BIKE-1: McEliece KEM: Optimized for speed of KeyGen
 - BIKE-2: Niederreiter KEM: Optimized for PK, ciphertext size.
 - BIKE-3: patented LWE-like "Ouroboros" key exchange.
 - Uses modified "noisy syndrome" decoder.
 - Slightly different security assumption (probably.)

Some Coding Theory

- Generator matrix (Systematic form)
 - $n \times k$

 $G = [I_k \mid C]$

- Parity Check matrix (Systematic form)
 - $n \times (n-k)$

$$H = \left[-C^{T^{\parallel}}In_{k}\right]$$

- Definining feature: $HG^T = 0$
- Codewords *x* may either be defined as
 - *n*-bit vectors that can be expressed as x = mG for *k*-bit *m*
 - Solutions to $Hx^T = 0$

- Syndrome: $s = H(mG + e)^T = H(e^T)$
 - Mapping s to minimal weight e is sometimes easy but NP hard in general.
- McEliece Encryption: mG + e is ciphertext, m is plaintext.
- Niederreiter Encryption: *s* is ciphertext, *e* is plaintext.
 - Note: Both "McEliece" and Niederreiter KEMs for BIKE use Hash(e) as shared secret.

MDPC (Moderate Density Parity Check) Codes (special case where n = 2k)

• Secret *sparse* parity check matrix:

 $H = (H_0|H_1)$

- Public parity check
 - Random Row mixing (BIKE-1): $H_{pub1} = RH = (RH_0|RH_1)$
 - Systematic form (BIKE-2): $H_{pub2} = H_1^{-1}H = (H_1^{-1}H_0|I)$
- Public Generator Matrix (Systematic Form)
 - $G_{pub} = (I|(H_1^{-1}H_0)^T)$
- NOTE: $HG_{pub}^{T} = H_{pub1} G_{pub}^{T} = H_{pub2} G_{pub}^{T} = 0.$
 - So all are the same code.

Decoding MDPC codes (The Bit-Flip Algorithm)

• Want to find low weight e such that $He^T = s$

```
Algorithm 1 Bit Flipping Algorithm
Require: H \in \mathbb{F}_2^{(n-k) \times n}, s \in \mathbb{F}_2^{n-k}
Ensure: eH^T = s
 1: e \leftarrow 0
 2: s' \leftarrow s
 3: while s' \neq 0 do
        \tau \leftarrow threshold \in [0, 1], found according to some predefined rule
 4:
     for j = 0, ..., n - 1 do
 5:
      if |h_j \star s'| \ge \tau |h_j| then
 6:
                e_i \leftarrow e_i + 1 \mod 2
 7:
        s' \leftarrow s - eH^T
 8:
 9: return e
h_i denotes the j-th column of H, as a row vector, '\star' denotes the component-
wise product of vectors, and |h_i \star s| is the number of unchecked parity equations
```

involving **j**.

Decoding MDPC codes with noisy syndrome (used in BIKE-3)

• Want to find low weight e, e' such that $He^T + e'^T = s$

```
Algorithm 2 Extended Bit Flipping AlgorithmRequire: H \in \mathbb{F}_2^{(n-k)\times n}, s \in \mathbb{F}_2^{n-k}, integer u \ge 0Ensure: |s - eH^T| \le u1: e \leftarrow 02: s' \leftarrow s3: while |s'| > u do4: \tau \leftarrow threshold \in [0, 1], found according to some predefined rule //whatever that means5: for j = 0, \dots, n-1 do6: if |h_j \star s'| \ge \tau |h_j| then7: e_j \leftarrow e_j + 1 \mod 28: s' \leftarrow s - eH^T9: return e
```

Quasi-Cyclic structure

- Use n = 2k, where k is prime and $x^k 1$ is (x 1) times a primitive polynomial mod 2.
- Represent $k \times k = (n k) \times (n k)$ blocks as polynomials in the ring $GF2[x]/x^k 1$.
 - Now block multiplication commutes.
 - And blocks only require k bit representation.
 - They look like this:

$$\begin{pmatrix} a & b & c & d & e & f \\ f & a & b & c & d & e \\ e & f & a & b & c & d \\ d & e & f & a & b & c \\ c & d & e & f & a & b \\ b & c & d & e & f & a \end{pmatrix}$$

BIKE 1-3 Summary Table (Switching to their notation for variable names.)

• *m* and *g* are random polynomials in $GF2[x]/(x^r - 1)$

• e_0 and e_1 are polynomials in the same ring with hamming weights summing to t. e, when present has Hamming weight t/2.

Comparison between BIKE versions. For ease of comparison, we provide a summary of the three schemes in Table 2 below.

	BIKE-1	BIKE-2	BIKE-3			
SK	(h_0, h_1) with $ h_0 = h_1 = w/2$					
PK	$(f_0, f_1) \leftarrow (gh_1, gh_0)$	$(f_0, f_1) \leftarrow (1, h_1 h_0^{-1})$	$(f_0, f_1) \leftarrow (h_1 + gh_0, g)$			
Enc	$(c_0,c_1) \leftarrow (mf_0 + e_0, mf_1 + e_1)$	$c \leftarrow e_0 + e_1 f_1$	$(c_0,c_1) \leftarrow (e+e_1f_0,e_0+e_1f_1)$			
		$K \leftarrow \mathbf{K}(e_0, e_1)$				
Dec	$s \leftarrow c_0 h_0 + c_1 h_1 ; u \leftarrow 0$	$s \leftarrow ch_0$; $u \leftarrow 0$	$s \leftarrow c_0 + c_1 h_0$; $u \leftarrow t/2$			
	$(e'_0, e'_1) \leftarrow \texttt{Decode}(s, h_0, h_1, u)$					
	$K \leftarrow \mathbf{K}(e'_0, e'_1)$					

Table 2: Algorithm Comparison

• If you do out the math $s = e_0 h_0 + e_1 h_1$ (for BIKE-1,2) and $s = e_0 h_0 + e_1 h_1 + e$ for (BIKE-3)

BIKE Parameters

- Polynomials are over ring $GF2[x]/(x^r 1)$
- n = 2r is the number of bits in the error vector (e_0, e_1)
- *t* is the Hamming weight of the error vector.
- w is the row weight of the MDPC code (h_0, h_1)

	BIKE-1 and BIKE-2				BIKE-	3		
Security	n	r	w	t	n	r	w	t
Level 1	$20,\!326$	10,163	142	134	$22,\!054$	$11,\!027$	134	154
Level 3	39,706	19,853	206	199	43,366	$21,\!683$	198	226
Level 5	$65,\!498$	32,749	274	264	72,262	$36,\!131$	266	300

Table 3: Suggested Parameters.

Performance

(Note: Jacob's numbers look similar, although consistently larger by a factor of ~2.)

BIKE-1

Quantity	Size	Level 1	Level 3	Level 5
Private key	$w \cdot \lceil \log_2(r) \rceil$	2,130	2,296	4,384
Public key	n	20, 326	43,786	65,498
Ciphertext	n	20,326	43,786	65,498

Table 4: Private Key, Public Key and Ciphertext Size in Bits.

Operation	Level 1	Level 3	Level 5
Key Generation	730,025	1,709,921	2,986,647
Encapsulation	689, 193	1,850,425	3,023,816
Decapsulation	2,901,203	7,666,855	17,483,906

Table 6: Latency Performance in Number of Cycles.

BIKE-2

Quantity	Size	Level 1	Level 3	Level 5
Private key	$w \cdot \lceil \log_2(r) \rceil$	2,130	3,296	4,384
Public key	r	10, 163	21,893	32,749
Ciphertext	r	10, 163	21,893	32,749

Table 7: Private Key, Public Key and Ciphertext Size in Bits.

Operation	Level 1	Level 3	Level 5
Key Generation	6,383,408	22,205,901	58,806,046
Encapsulation	281,755	710,970	1,201,161
Decapsulation	2,674,115	7, 114, 241	16,385,956

Table 9: Latency Performance in Number of Cycles.

BIKE-3

Quantity	Size	Level 1	Level 3	Level 5
Private key	$w \cdot \lceil \log_2(r) \rceil$	2,010	3,168	4,522
Public key	n	22,054	43,366	72,262
Ciphertext	n	22,054	43, 366	72,262

Table 10: Private Key, Public Key and Ciphertext Size in Bits.

Operation	Level 1	Level 3	Level 5
Key Generation	433,258	1,100,372	2,300,332
Encapsulation	575,237	1,460,866	3,257,675
Decapsulation	3, 437, 956	7,732,167	18,047,493

Table 12: Latency Performance in Number of Cycles.

BIKE-2 Batch Key Generation

- Assumes polynomial inversion is more expensive than polynomial multiplication
- Generate polynomials *x*, *y*, *z* ...
- Compute $tmp^{-1} = (x \cdot y \cdot z \cdot \cdots)^{-1}$
- To get e.g. x^{-1} compute $x^{-1} = tmp^{-1} \cdot y \cdot z \cdot \cdots$.

Operation	Reference	Batch	Gain (%)
Level 1	6, 383, 408	1,647,843	74.18%
Level 3	22,205,901	4,590,452	79.32%
Level 5	58,806,046	9,296,144	84.19%

Table 13: Reference Versus Batch Key Generation (in cycles, for N = 100).

Known attacks: Information Set Decoding

- Basic idea Guess k-bits of low weight codeword/ error vector and use linear algebra to find the rest.
 - Find error vector:
 - Permute columns of G resulting in G' = GP = (A|B).
 - Hope first k bits of eP are zero.
 - If so, can multiply first k bits of (mG + e)P by A^{-1} to recover m
 - Asymptotic complexity: $\left(\frac{n}{n-k}\right)^t$
 - Find MDPC private key:
 - Permute columns of H_{pub} resulting in $H' = H_{pub} = (A|B)$.
 - Hope first k bits of a row of HP are (1, 0, ..., 0).
 - If so, the row of *HP* is the top row of $A^{-1} H'$
 - Asymptotic complexity: $\left(\frac{n}{n-k}\right)^{W}$
- Complications
 - Fancier versions of ISD: Stern's algorithm, MMT, BJMM etc.
 - Same asymptotic complexity as t/n and w/n go to zero. (Note for MDPC: $t \approx w \approx \sqrt{n}$)
 - k target rows in parity check matrix: Improves key recovery complexity to $\frac{1}{k} \left(\frac{n}{n-k} \right)^{W}$.
 - Ring structure plus Decoding One Out of Many (DOOM) improves error finding complexity to $\frac{1}{\sqrt{k}} \left(\frac{n}{n-k}\right)^{l}$.
 - Grover's algorithm gives near full square root speedup

Known attacks: Reaction Attacks

- Guo, Johannson, Stankovsky [GJS 2016] show how to recover private key from statistical analysis of decryption failures.
- This attack does not affect the claimed security of BIKE, since it is recommended for ephemeral-ephemeral use only, and only claims IND-CPA security.

Choice of r

- Polynomials are over ring $GF2[x]/(x^r 1)$
- Recall that r is chosen so that $\frac{x^{r-1}}{x-1}$ is irreducible mod 2.
- Why?
- Possible reasons:
 - It's easy to tell whether a polynomial is invertible (only requires odd hamming weight strictly less than r)
 - Might be worried about folding attacks like [Hauteville, Tillich 2015] on LRPC codes.

Security Proof

- Submission gives an attempted security proof
 - Basic assumptions:
 - QC MDPC codes in systematic form look random.
 - Syndromes from random QC codes and low weight error vectors look random.
 - Won't go into detail, but I think there are errors in the proof
 - Claims BIKE-3 and BIKE-1 have same assumptions (I think it BIKE-1 should have same assumptions as BIKE-2).
 - A little less clear about distinction between search and decision than I'd like
 - Since GF2[x]/(x^r − 1) factors as GF2[x]/(x − 1) ⊗ GF2[x]/(x^{r−1} + … + 1), parity of syndromes/ codes is often predictable. (Pointed out on forum.)
 - Nonetheless, for what it's worth, I think something like the attempted proof can be correctly stated/ proved.

Similar submissions

- Straight up knock off
 - QC-MDPC-KEM
- Pretty much the same problem
 - HQC (If BIKE is NTRU, this is RingLWE)
- Similar problem; probably harder to analyze
 - LEDApkc/LEDAkem
- Basically the same scheme, but Rank metric
 - LAKE/Locker, Ouroboros-R
- Basically the same scheme, but Euclidean metric
 - NTRUxxx

Advantages and limitations

- Advantages
 - All known IND-CPA attacks are well-understood information set decoding type attacks.
 - ISD has been known for 45 years and improvements have left asymptotic complexity the same.
 - Compares favorably with lattice attacks (stability) and Rank-Metric attacks (newness)
 - Relatively small key sizes (10,000 to 65,000 bits)
 - Reasonably fast for all operations.
 - Except for BIKE2 keygen without batching, operations look like they take less than a millisecond on a good processor for 128 bit security.
- Limitations
 - High Decryption failure rate
 - Does not provide IND-CCA security
 - Security proof could use improvement/clarification
 - Key/Message sizes are slightly larger than some (ring/ cyclic) lattice and rank schemes.
 - Vague possibility there might be something to exploit in ring structure.