
From: Moody, Dustin (Fed)
To:
Subject: Fw: BIKE slides
Date: Friday, February 23, 2018 10:14:17 AM
Attachments: BIKE.pptx

From: Perlner, Ray (Fed)
Sent: Friday, February 23, 2018 10:02 AM
To: Moody, Dustin (Fed)
Subject: BIKE slides

(b) (6)

BIKE

(Bit-Flipping Key Exchange)
Presented by Ray Perlner

High Level Summary

• Variants of McEliece/ Neiderreiter based on Quasi-Cyclic MDPC codes
• Non-algebraic codes like MDPC codes look good for key reduction with quasi cyclic

structure
• (unlike algebraic codes e.g. those used in DAGS and BigQuake)

• Performance is competitive with lattice-based schemes, but attack complexity seems
easier to analyze.

• Has somewhat high dec. failure rate (< 10-7); targeting IND-CPA.
• Three versions

• BIKE-1: McEliece KEM: Optimized for speed of KeyGen
• BIKE-2: Niederreiter KEM: Optimized for PK, ciphertext size.
• BIKE-3: patented LWE-like “Ouroboros” key exchange.

• Uses modified “noisy syndrome” decoder.
• Slightly different security assumption (probably.)

Some Coding Theory

• Generator matrix (Systematic form)
• 𝑛𝑛 × 𝑘𝑘

𝐺𝐺 = [𝐼𝐼𝑘𝑘 | 𝐶𝐶]
• Parity Check matrix (Systematic form)

• 𝑛𝑛 × (𝑛𝑛 − 𝑘𝑘)

𝐻𝐻 = [−𝐶𝐶𝑇𝑇 | 𝐼𝐼𝑛𝑛
− 𝑘𝑘]

• Definining feature: 𝐻𝐻𝐺𝐺𝑇𝑇 = 0

• Codewords x may either be defined as
• n-bit vectors that can be expressed as
𝑥𝑥 = 𝑚𝑚𝐺𝐺 for 𝑘𝑘-bit 𝑚𝑚

• Solutions to 𝐻𝐻𝑥𝑥𝑇𝑇 = 0

• Syndrome: s = H(mG + e)T = H(eT)
• Mapping s to minimal weight e is

sometimes easy but NP hard in general.

• McEliece Encryption: mG + e is
ciphertext, m is plaintext.

• Niederreiter Encryption: s is
ciphertext, e is plaintext.

• Note: Both “McEliece” and Niederreiter
KEMs for BIKE use Hash(e) as shared
secret.

MDPC (Moderate Density Parity Check) Codes
(special case where n = 2k)
• Secret sparse parity check matrix:

𝐻𝐻 = 𝐻𝐻0 𝐻𝐻1
• Public parity check

• Random Row mixing (BIKE-1): 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝1 = 𝑅𝑅𝐻𝐻 = 𝑅𝑅𝐻𝐻0 𝑅𝑅𝐻𝐻1
• Systematic form (BIKE-2): 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐻𝐻1−1𝐻𝐻 = 𝐻𝐻1−1𝐻𝐻0 𝐼𝐼

• Public Generator Matrix (Systematic Form)
• 𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝 = (𝐼𝐼|(𝐻𝐻1−1𝐻𝐻0)𝑇𝑇)

• NOTE: 𝐻𝐻𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 = 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝1 𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 = 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇 = 0.
• So all are the same code.

Decoding MDPC codes
(The Bit-Flip Algorithm)

• Want to find low weight e such that 𝐻𝐻𝑒𝑒𝑇𝑇 = 𝑠𝑠

Decoding MDPC codes with noisy syndrome
(used in BIKE-3)
• Want to find low weight e, e’ such that 𝐻𝐻𝑒𝑒𝑇𝑇 + 𝑒𝑒𝑒𝑇𝑇 = 𝑠𝑠

Quasi-Cyclic structure

• Use 𝑛𝑛 = 2𝑘𝑘, where 𝑘𝑘 is prime and 𝑥𝑥𝑘𝑘 − 1 is (𝑥𝑥 − 1) times a primitive
polynomial mod 2.

• Represent 𝑘𝑘 × 𝑘𝑘 = 𝑛𝑛 − 𝑘𝑘 × (𝑛𝑛 − 𝑘𝑘) blocks as polynomials in the ring
GF2 𝑥𝑥 /𝑥𝑥𝑘𝑘 − 1.

• Now block multiplication commutes.
• And blocks only require 𝑘𝑘 bit representation.
• They look like this: 𝑎𝑎 𝑏𝑏

𝑓𝑓 𝑎𝑎
𝑐𝑐 𝑑𝑑
𝑏𝑏 𝑐𝑐

𝑒𝑒 𝑓𝑓
𝑑𝑑 𝑒𝑒

𝑒𝑒 𝑓𝑓
𝑑𝑑 𝑒𝑒

𝑎𝑎 𝑏𝑏
𝑓𝑓 𝑎𝑎

𝑐𝑐 𝑑𝑑
𝑏𝑏 𝑐𝑐

𝑐𝑐 𝑑𝑑
𝑏𝑏 𝑐𝑐

𝑒𝑒 𝑓𝑓
𝑑𝑑 𝑒𝑒

𝑎𝑎 𝑏𝑏
𝑓𝑓 𝑎𝑎

BIKE 1-3 Summary Table
(Switching to their notation for variable names.)
• 𝑚𝑚 and 𝑔𝑔 are random polynomials in GF2[x]/(𝑥𝑥𝑟𝑟 − 1)
• 𝑒𝑒0 and 𝑒𝑒1 are polynomials in the same ring with hamming weights summing to 𝑡𝑡. e, when present has

Hamming weight 𝑡𝑡/2.

• If you do out the math 𝑠𝑠 = 𝑒𝑒0ℎ0 + 𝑒𝑒1ℎ1 (for BIKE-1,2) and 𝑠𝑠 = 𝑒𝑒0ℎ0 + 𝑒𝑒1ℎ1 + 𝑒𝑒 for (BIKE-3)

BIKE Parameters

• Polynomials are over ring GF2[x]/(𝑥𝑥𝑟𝑟 − 1)
• 𝑛𝑛 = 2𝑟𝑟 is the number of bits in the error vector (𝑒𝑒0, 𝑒𝑒1)
• 𝑡𝑡 is the Hamming weight of the error vector.
• 𝑤𝑤 is the row weight of the MDPC code (ℎ0, ℎ1)

Performance
(Note: Jacob’s numbers look similar, although consistently larger by a factor of ~2.)

BIKE-1 BIKE-2 BIKE-3

BIKE-2 Batch Key Generation

• Assumes polynomial inversion is more expensive than polynomial
multiplication

• Generate polynomials 𝑥𝑥,𝑦𝑦, 𝑧𝑧 …
• Compute 𝑡𝑡𝑚𝑚𝑡𝑡−1 = (𝑥𝑥 � 𝑦𝑦 � 𝑧𝑧 � ⋯)−1

• To get e.g. 𝑥𝑥−1 compute 𝑥𝑥−1 = 𝑡𝑡𝑚𝑚𝑡𝑡−1 � 𝑦𝑦 � 𝑧𝑧 � ⋯.

Known attacks: Information Set Decoding
• Basic idea Guess k-bits of low weight codeword/ error vector and use linear algebra to find the rest.

• Find error vector:
• Permute columns of 𝐺𝐺 resulting in 𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 = (𝐴𝐴|𝐵𝐵).
• Hope first 𝑘𝑘 bits of 𝑒𝑒𝐺𝐺 are zero.
• If so, can multiply first 𝑘𝑘 bits of (𝑚𝑚𝐺𝐺 + 𝑒𝑒)𝐺𝐺 by 𝐴𝐴−1 to recover m

• Asymptotic complexity: 𝑛𝑛
𝑛𝑛−𝑘𝑘

𝑡𝑡

• Find MDPC private key:
• Permute columns of 𝐻𝐻𝑡𝑡𝑝𝑝𝑏𝑏 resulting in 𝐻𝐻𝐺 = 𝐻𝐻𝑡𝑡𝑝𝑝𝑏𝑏 = (𝐴𝐴|𝐵𝐵).
• Hope first 𝑘𝑘 bits of a row of 𝐻𝐻𝐺𝐺 are (1, 0, …, 0).
• If so, the row of 𝐻𝐻𝐺𝐺 is the top row of 𝐴𝐴−1 𝐻𝐻𝐺
• Asymptotic complexity: 𝑛𝑛

𝑛𝑛−𝑘𝑘

𝑤𝑤

• Complications
• Fancier versions of ISD: Stern’s algorithm, MMT, BJMM etc.

• Same asymptotic complexity as 𝑡𝑡/𝑛𝑛 and 𝑤𝑤/𝑛𝑛 go to zero. (Note for MDPC: 𝑡𝑡 ≈ 𝑤𝑤 ≈ 𝑛𝑛)

• 𝑘𝑘 target rows in parity check matrix: Improves key recovery complexity to 1
𝑘𝑘

𝑛𝑛
𝑛𝑛−𝑘𝑘

𝑤𝑤
.

• Ring structure plus Decoding One Out of Many (DOOM) improves error finding complexity to 1
𝑘𝑘

𝑛𝑛
𝑛𝑛−𝑘𝑘

𝑡𝑡
.

• Grover’s algorithm gives near full square root speedup

Known attacks: Reaction Attacks

• Guo, Johannson, Stankovsky [GJS 2016] show how to recover private
key from statistical analysis of decryption failures.

• This attack does not affect the claimed security of BIKE, since it is
recommended for ephemeral-ephemeral use only, and only claims
IND-CPA security.

Choice of r

• Polynomials are over ring GF2[x]/(𝑥𝑥𝑟𝑟 − 1)

• Recall that 𝑟𝑟 is chosen so that 𝑥𝑥
𝑟𝑟−1
𝑥𝑥−1

 is irreducible mod 2.

• Why?
• Possible reasons:

• It’s easy to tell whether a polynomial is invertible (only requires odd hamming
weight strictly less than 𝑟𝑟)

• Might be worried about folding attacks like [Hauteville, Tillich 2015] on LRPC
codes.

Security Proof

• Submission gives an attempted security proof
• Basic assumptions:

• QC - MDPC codes in systematic form look random.
• Syndromes from random QC codes and low weight error vectors look random.

• Won’t go into detail, but I think there are errors in the proof
• Claims BIKE-3 and BIKE-1 have same assumptions (I think it BIKE-1 should have same

assumptions as BIKE-2).
• A little less clear about distinction between search and decision than I’d like
• Since GF2[x]/(𝑥𝑥𝑟𝑟 − 1) factors as GF2[x]/(𝑥𝑥 − 1) ⊗ GF2[x]/(𝑥𝑥𝑟𝑟−1 + ⋯ + 1), parity of

syndromes/ codes is often predictable. (Pointed out on forum.)
• Nonetheless, for what it’s worth, I think something like the attempted proof

can be correctly stated/ proved.

Similar submissions

• Straight up knock off
• QC-MDPC-KEM

• Pretty much the same problem
• HQC (If BIKE is NTRU, this is RingLWE)

• Similar problem; probably harder to analyze
• LEDApkc/LEDAkem

• Basically the same scheme, but Rank metric
• LAKE/Locker, Ouroboros-R

• Basically the same scheme, but Euclidean metric
• NTRUxxx

Advantages and limitations

• Advantages
• All known IND-CPA attacks are well-understood information set decoding type attacks.

• ISD has been known for 45 years and improvements have left asymptotic complexity the same.
• Compares favorably with lattice attacks (stability) and Rank-Metric attacks (newness)

• Relatively small key sizes (10,000 to 65,000 bits)
• Reasonably fast for all operations.

• Except for BIKE2 keygen without batching, operations look like they take less than a millisecond on a
good processor for 128 bit security.

• Limitations
• High Decryption failure rate
• Does not provide IND-CCA security
• Security proof could use improvement/clarification
• Key/Message sizes are slightly larger than some (ring/ cyclic) lattice and rank schemes.
• Vague possibility there might be something to exploit in ring structure.

	ADPE264.tmp
	BIKE��(Bit-Flipping Key Exchange)
	High Level Summary
	Some Coding Theory
	MDPC (Moderate Density Parity Check) Codes�(special case where n = 2k)
	Decoding MDPC codes�(The Bit-Flip Algorithm)
	Decoding MDPC codes with noisy syndrome�(used in BIKE-3)
	Quasi-Cyclic structure
	BIKE 1-3 Summary Table�(Switching to their notation for variable names.)
	BIKE Parameters�
	Performance�(Note: Jacob’s numbers look similar, although consistently larger by a factor of ~2.)
	BIKE-2 Batch Key Generation
	Known attacks: Information Set Decoding
	Known attacks: Reaction Attacks
	Choice of r
	Security Proof
	Similar submissions
	Advantages and limitations

